鮑爾環(huán)003
陶瓷鮑爾環(huán)填料是在陶瓷拉西環(huán)的基礎(chǔ)上開發(fā)的一種高徑相等的開孔環(huán)型填料,每層窗孔有3個(gè)舌葉,每個(gè)舌葉內(nèi)彎指向環(huán)心,上下兩層窗孔的位置相反錯(cuò)開,一般開孔面積約占環(huán)壁總面積的30%左右,使得填料塔內(nèi)的氣體和液體能夠從窗孔自由通過(guò),改善了氣液分布,充分利用了環(huán)的內(nèi)表面。陶瓷鮑爾環(huán)具有優(yōu)異的耐酸耐熱性能,能耐除氫氟酸以外的各種無(wú)機(jī)酸、有機(jī)酸及有機(jī)溶劑腐蝕,可在各種高溫場(chǎng)合使用,應(yīng)用范圍十分廣泛,可用于化工、冶金、煤氣、環(huán)保等行業(yè)的干燥塔、吸收塔、冷卻塔、洗滌塔、再生塔等。
ceramic rasching ring is the earliest developed random packing, named after the German chemist Friedrich Raschig. It's small tube cutting, which outside diameter is equal to its height, providing a surface for (re)evaporation of the most volatile part in the refluxing distillate, typically 10 mm in diameter and 12 mm long.
It's used in commercial fractional distillation towers to reduce pressure loss (versus using trays), while maintaining good efficiency and economy. Typically the change in pressure (also called "delta p") is lower than in the case of trays but slightly higher than for structured packing.
With the characters of high mechanical strength, high chemical stability, and excellent heat endurance, Ceramic Raschig Ring can resist high temperature, acid (except HF), alkali, salt and various organic solvents. It's widely applied in various packing towers of desiccation, absorption, cooling, washing, and regeneration in industries of petrochemical, chemical, metallurgy, gas and oxygen generation.
For raschig ring with big size over 100mm, it's usually filled in the column orderly. If its size is less than 100mm, raschig ring is stacked in the column randomly.
Ceramic Random Packings
Ceramic random packings include Rasching ring, Cross partition ring, Pall ring , Intalox saddles, Super Intalox, Cascade ring and Conjugate ring.
Main specification:
Name | Type | Diameter×Height×Thickness | Surface Area | Void Fraction | Bulk Density | No.,bulk | Dry Packing Factor |
mm | m2/m3 | % | Kg/m3 | n/m3 | m-1 | ||
Rasching ring | Φ25 | 25×25×2.5 | 190 | 78 | 510 | 49100 | 400 |
Φ38 | 38×38×4 | 126 | 75 | 580 | 12700 | 305 | |
Φ50 | 50×50×5 | 93 | 81 | 465 | 6400 | 177 | |
Φ80 | 80×80×8 | 90 | 68 | 640 | 1910 | 234 | |
Φ100 | 100×100×10 | 70 | 70 | 655 | 1000 | 172 | |
Φ150 | 150×150×15 | 50 | 68 | 655 | 292 | 142 |
Name | Type | Diameter×Height×Thickness | Surface Area | Void Space | Bulk Density | No.elements | Packing Factor |
mm | m2/m3 | % | Kg/m3 | n/m3 | m-1 | ||
Cross-partition ring | Φ50 | 50×50×5 | 135 | 50 | 520 | 5600 | 1080 |
Φ80 | 80×80×8 | 120 | 53 | 780 | 2100-2500 | 806 | |
Φ100 | 100×100×10 | 110 | 56 | 750 | 900-1000 | 626 | |
Φ150 | 150×150×15 | 60 | 58 | 680 | 270-300 | 308 |
Name | Type | Diameter×Height×Thickness | Surface Area | Void Space | Bulk Density | No.elements | Packing Factor |
mm | m2/m3 | % | Kg/m3 | n/m3 | m-1 | ||
Pall ring | Φ25 | 25×25×3 | 210 | 73 | 630 | 36000 | 540 |
Φ38 | 38×38×4 | 140 | 75 | 590 | 12000 | 332 | |
Φ50 | 50×50×5 | 100 | 78 | 520 | 4900 | 210 | |
Φ80 | 80×80×8 | 90 | 72 | 640 | 1910 | 131 |
Name | Type | Diameter×Height×Thickness | Surface Area | Void Space | Bulk Density | No.elements | Packing Factor |
mm | m2/m3 | % | Kg/m3 | n/m3 | m-1 | ||
Intalox saddles | Φ16 | 16×2×2 | 450 | 70 | 710 | 382000 | 1311 |
Φ25 | 25×19×3 | 250 | 74 | 610 | 84000 | 617 | |
Φ38 | 38×30×4 | 164 | 75 | 590 | 19680 | 389 | |
Φ50 | 50×40×5 | 142 | 76 | 560 | 8100 | 323 | |
Φ76 | 76×57×9 | 92 | 78 | 520 | 1800 | 194 | |
Name | Type | Diameter×Height×Thickness | Surface Area | Void Space | Bulk Density | No.elements | Packing Factor |
mm | m2/m3 | % | Kg/m3 | n/m3 | m-1 | ||
Supper Intalox | Φ25 | 25×19×3 | 160 | 78 | 530 | 52000 | 337 |
Φ38 | 38×30×4 | 102 | 80 | 480 | 16000 | 199 | |
Φ50 | 50×40×5 | 88 | 81 | 450 | 7300 | 166 | |
Φ76 | 76×57×9 | 58 | 82 | 430 | 1600 | 105 | |
Name | Type | Diameter×Height×Thickness | Surface Area | Void Space | Bulk Density | No.elements | Packing Factor |
mm | m2/m3 | % | Kg/m3 | n/m3 | m-1 | ||
Cascade ring | Φ25 | 25×15×3 | 210 | 73 | 650 | 72000 | 540 |
Φ38 | 38×23×4 | 153 | 74 | 630 | 21600 | 378 | |
Φ50 | 50×30×5 | 102 | 76 | 580 | 9100 | 232 | |
Φ76 | 76×46×9 | 75 | 78 | 530 | 2500 | 158 | |
Name | Type | Diameter×Height×Thickness | Surface Area | Void Space | Bulk Density | No.elements | Packing Factor |
mm | m2/m3 | % | Kg/m3 | n/m3 | m-1 | ||
Conjugate ring | Φ25 | 25×25×3 | 175 | 78 | 520 | 64000 | 369 |
Φ38 | 38×38×4 | 118 | 80 | 470 | 14000 | 230 | |
Φ50 | 50×50×5 | 72 | 81 | 450 | 6300 | 135 |
Detailed Product Description
Ceramic saddles, ceramic saddle ring, ceramic saddle tower packing, ceramic tower packing, ceramic random packing
Size & Specification:
Product Name | Size | Diameter*Height*Thickness | Surface Area | Void | Bulk | Number/ m3 | Packing factor |
mm | mm | m2/m3 | Space | Density | m-1 | ||
% | kg/m3 | ||||||
Intalox saddle | Φ16 | 16×12×2 | 450 | 70 | 710 | 382000 | 1311 |
ring | Φ25 | 25×19×3 | 250 | 74 | 610 | 84000 | 617 |
Φ38 | 38×30×4 | 164 | 75 | 590 | 25000 | 389 | |
Φ50 | 50×40×5 | 142 | 76 | 560 | 9300 | 323 | |
Φ76 | 76×57×9 | 92 | 78 | 520 | 1800 | 194 |
Ceramic Saddles are divided into two different types of products according to their properties, KPK-CIS-A is often used in the field of Chemical and Petrochemical industries, and KPK-CIS-B is mainly used in environmental areas such as RTO(Regenerative Thermal Oxidizers) equipment. But both of them are the most frequently used high-performance packing and exhibit advantages for most applications in comparison with other shapes. Their smooth surface imparts a high chemical resistance and provides Ceramic Intalox saddle rings (Ceramic Saddles) with a high level of stability. Due to their simple form, ceramic saddles can be produced at a relatively low cost.
Chemical composition:
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O+Na2O | Other |
>73% | 17-23% | <1.0% | <0.5% | <0.5% | 2-4% | <0.1% |
Physical properties:
Index | Value |
Specific gravity(g/cm3) | 2.3 |
Water absorption (%) | <0.3 |
Acid resistance (%) | >99.6 |
Max operating temp.() | 1100 |
Porosity (%) | <1 |
Mohs hardness(scale) | >6.5 |
Thermal conductivity(w/m.k) | 0.9-1.0 |
Specific heat(j/kg) | 850-900 |
Pall Ringdetail
Ceramic pall ring is a kind of random packing further developed based on Rischig Ring, with two layers of windows opened along its tube wall. The outside diameter is equal to its height. For each layer, there are 3 ligules bending inward the axes of the ring. The open position for windows between the two layers is staggered oppositely.
Generally, the area for open windows occupies 30% of the total area of the tube wall. It helps vapor and liquid flow freely through these windows, making full use of the rings inner surface to improve distribution of vapor-liquid.
With the characters of high mechanical strength, high chemical stability, and excellent heat endurance.
Ceramic Pall Ring can resist high temperature, acid ( except HF ), alkali, salt and various organic solvents. It is widely applied in various packing towers of desiccation, absorption, cooling, washing and regeneration in industries of petrochemical, chemical, metallurgy, gas and oxygen generation.
If ring's size is over 100mm, it is usually filled in column orderly. If its size is less than 90mm, pall ring is stacked in the column randomly.
Technical Date:
Name | Normal | Diameter*Height* | No.elements | ||||
mm | Thickness mm | Surface area | Void space | Bulk density | per/m3 | Packing factor | |
Copyright ? 2022 宜興市雙龍?zhí)沾捎邢薰?All Rights Reserved. 蘇ICP備16066114號(hào)-1 |